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Abstract 

We present a twedimensional, well-balanced, centrai-upwind scheme for approximating 
SdVtiOPS of the s h d ! ~ % ~  Water equations in thz presence Uf d statiuaary buttvrri lvpography 
on triangular meshes. 

Our starting point is the recent central scheme of Kurganov and Petrova (KP) for 
approximating solutions of conservation laws on triangular meshes. In order to extend this 
scheme from systems of conservation laws to systems of balance laws one has to find an 
appropriate discretization of the source terms. We first show that for general triangulations 
there is no discretization of the source terms that corresponds to a well-balanced form of 
the KP scheme. We then derive a new variant of a central scheme that can be balanced on 

We note in passing that i t  is straightforward to extend the KP scheme to general un- 
structured conformal meshes. This extension allows us to recover our previous well-balanced 
scheme on Cartesian grids. We conclude with several simulations, verifying the second-order 
accuracy of our scheme as  well a s  its well-balanced properties. 
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1 Introduction 

i1 cunsider a flon- in a two-dimensional channel u-ith a bottom elevation given by B(2)  , where 
2 = (x. y) Let H(Z ,  t )  represent the fluid depth abot-e the bottom, and C(Z. t )  = (u(Z, t ) .  ~(2. t ) )  
be the fluid velocity. The top surface at any time t is denoted by w(Z, t )  = B ( Z )  + H ( 2 .  t )  

The shallow water equations, introduced by Saint-Venant, in [22] , are commonly used t.o model 
f l o ~ s  in rivers or coastal areas. U’hen mTritt,en in terms of the t.op surface u and the momentum 
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(Hu, "L:) these equations are of the form 

wt + (Hu), + (He), = 0, 

(Hu) (Hv) 1 
( H ~ ) ~  + [ U - B  ] , + [m W - B  + - (w 2 - B)2]  = -g(w - B)B,. 

Y 

This choice of variables is particularly suitable for dealing with stationary steady-state solutions 
(see [la, 211 for details). For simplicity we fix the gravitational constant, 9, from now on to be 
g = 1. 

In this work we are interested in approximating solutions of (1.1) on triangular meshes. Our 
goal is to investigate how to adapt the semi-discrete central schemes on triangular meshes that 
were recently introduced by Kurganov and Petrova in [14] to this problem. We are interested 
in derivihg a discretization of the source terms in (1.1) that preserves stationary steady-state 
solutions, as such solutions play an important role in the dynamics of (1.1). 

Central schemes for conservation laws have become popular in recent years as a tool for ap- 
proximating solutions for multi-dimensional systems of hyperbolic conservation laws. Like other 
Godunov-type schemes, central schemes are based on a three-step procedure: a reconstruction 
step in which an interpolant is reconstructed from previously computed cell-averages; an evolu- 
tion step in which this interpolant is evolved exactly in time according to the equations; and a 
projection step in which the solution is projected back to cell-averages. When compared with 
other methods, central schemes are particularly appealing since they do not require any Riemann 
solvers and systems can be solved component-wise. 

A first-order prototype of central schemes is the Lax-Friedrichs scheme [6]. A second-order 
extension is due to Nessyahu and Tadmor [19]. Extensions to two dimensions are due to Armin- 
jon, Jiang and Tadmor [l, 111. By estimating bounds on the local speeds of propagation of 
information from discontinuities, it is possible to  pass to the semi-discrete limit (see [13, 151 and 
the references therein). There are several extensions of central schemes to unstructured grids. 
A fully discrete method is due to Arminjon et al. [2]; a recent semi-discrete scheme was pro- 
posed by Kurganov and Petrova in [14I. Balanced Central schemes for shallow water equations 
on Cartesian grids are due to Russo in the fully-discrete framework [2l] (see also [18]) and to 
Kurganov and Levy in the semi-discrete framework [12]. 

There are many approaches to approximating solutions of (1.1). VJe refer, e.g. to [3, 4, 5, 7, 
9,16, 17, 201 and the references therein. Our goal in this paper is to show that balancing is also 
possible with central schemes. We would like to emphasize that this is tie-firsf time. in- cfhich 
the balancing issues are treated for central schemes on unstructured grids. 

The paper is organized as follows. We start in Section 2 with a brief overview of the KP  
central scheme on triangular meshes. We note that this scheme is not limited to triangular 
meshes and it can be equally well applied to general unstructured grids. We also make the 
necessarj- adjustments to incorporate source terms into the scheme. We proceed in Section 3 
-with the cliscreTization of the cell-averages of the Source terms for t.he shallow-water equations. 
Thz g o d  is tc Ex! s discretizitinn slxh tjhzi. t41e s ~ h e m ~  will preserve scationar?; st,ead!- stat,es. 

- ~ -  - - -  - - ~  . ~ ~~~ 
.. ~ ~~ ~~ 



i - "  ' 

BALANCED SCHEhlES FOR THE SHALLOW Iv.4TER EQCirTIONS 3 

i.e. zero velocities and a flat surface. We show that on general unstructured meshes, there is no 
discretization of the source terms in the shallow water equations that provide a well-balanced 
form of the KP  scheme. We then proceed by showing how to modify the original scheme in 
such a way that it is possible to obtain a well-balanced discretization of the source terms. We 
conclude in Section 4 with numerical examples that demonstrate the accuracy of our scheme as 
well as its well-balanced property-. 

__ Acknowieagment: l n e  work of D. Levy was supported in part by the Nat,ional Science Foun- 
dation under Career Grant No. DMS-0133511. 

2 Central Schemes for Balance Laws on Unstructured 
Grids 

We consider the two-dimensional balance law. 

subject to the initial data, u(z, y, 0) = ug(z, 9). We are interested in approximating solutions 
of (2.1) that  are computed in terms of cell averages on a h-ed unstructured conformal grid. To 
simplify this exposition we first consider the scalar case. The scheme that is described below 
can be easily- extended component-wise to systems of balance laws. We will make this obvious 
extension later on when dealing with the specific problem of the system of shallow water equations 

LT-e focus our attention on tile central scheme on triangular meshes that was recently derived 
in [Id]. We briefly overview the derivation of this scheme in the setup of conservation laws of the 
form 

(1.1). 

ut + fh), g(u)y = 0. (2.2) 

We assume a conformal triangulation of the domain consisting of cells T3 of area IT,/. The 
neighboring cells to 
and q k  is denoted by EJk and is assumed to be of length h3k .  We also denote the outward unit 
normal to  T3 on the k-th edge as njk, and denote the midpoint of E3k as M 3 k  (see Fig. 2.1). 

are denoted by Tjk. IC = 1,2 ,3 ,  while the edge that is joint between 

We assume that the cell averages on all the cells {T,} are known at time t", 

and reconstruct a piecem-ise-polynomial 

J 

(2.4) 

Here uy(rc. y) is a two-dimensional polynomial that is 3-et to be determined and >iJ(z, y) is the 
characteristic functior, of the cell T'. Tc siaplif3- the notations %-e omit the time-dependelice in 
74.z T1-P alsn rlrlnntP by .&. y )  the PQ!f"-9?"&! that is recocstrccte?, ir, t h e  ce!! T 3" 
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Figure 2.1: The triangular grid 

Discontinuities in the iilterpolafit uI aloiig the edges of T3 prepagate with 8 maximal inward 
velocity uYk and a maximal outward velocity u;i t .  These velocities can be estimated (for convex 
fluxes) as 

\\-here J (uI (A&)) is the Jacobian of the flux F = (f, g) evaluated at AdIk and XI < . . . < XN are 
its N eigenvalues. These local speeds of propagation are then used to determine evolution points 
that are away from the propagating discontinuities. An exact evolution of the reconstruction at 
these evolution points is followed by an intermediate piecewise polynomial reconstruction and 
finally projected back onto the original cells; providing the cell-averages at the next time-step 
a;+'. Further details can be found in [14]. 

A semi-discrete scheme is then obtained at the limit 

(2.6) 

Most of the terms on the RHS of (2.6) vanish in thk limit as At -+ 0. The only quantit,y that 
has to be determined is a quadrature rule for the integrals of the flux functions over the edges 
of the cells. If we assume a Gaussian quadrature with m nodes 

m-hich is scaled to hIk.  and denote the quadrature points on E,rk as G ; k 7  the K p  scheme for 
triangular meshes is 

(2.7) 
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where F = (f.9) If the fluxes are integrated with a midpoint quadrature (as suggested in 1141) 
and a-e use the notation u;it := u:,k (M:,k), uyk := u:, (Ad:,,), F;; := F(uyk), and P;lt := F(u;iC). 
the semi-discrete scheme (2.7) becomes 

A basic observation that n-ill be used below is that the semi-discrete scheme (2.8) is valid for 
any conformal grid, not necessarily triangular. All that  one has to  do is to make the suitable 
adjustments in the notations (e.g. being the area of the cell T:, regardless of the shape of 
that cell) and replace the sum over the three edges of the triangle by a sum over the N:, edges 
of each cell q. When approximating solutions to balance laws of the form (2.1) the scheme has 
one additional term due to the source term S(u, x, y. t ) ,  i e. 

Here 

(2.10) 

is a discretization of the cell-average of the source term that should be obtained with an a p  
propriate quadrature. It is the discretization of (2.10) that serves as the topic for the next 
section. 

3 A Well-Balanced Scheme 

In this section we present a scheme for approximating the solution of (1.1) which is balanced 
via a discretized average of the source terms. In Section 3.1 we show that the K P  scheme 
(2.9) cannot be balanced using a straightforward discretization of the source terms on general 
conformal unstructured meshes. In Section 3.2 we present a new scheme based on (2.7), n*hich 
does allow such balance on genera! conformal triangular meshes. 

3.1 Balancing the K P  scheme 

Our goal now is to look for a discretization of the souce  term (2.10) such that the scheme (2.9) 
will preserve stationary steadj--state solutions. Hence. we assume zero velocities. 71 = v = 0. and 
a constant surface; i.e. u = Const. 

Since the first equation in (1.1) is homogeneous. E-e start by considering the second equation. 
Similar analysis applies to the third equation i9-e are therefore looking for a discretization of 
the average of the source term 

~ 
~ 
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over the cell T3. The velocities are zero and therefore the only non-zero component of the flux 
in (1.1) is 

1 
2 

f = - (w - B)2.  

This means that in order for the scheme (2.9) to preserve stationary steady-state solutions, the 
average of the source term (3.1) over the cell T3 has to be discretized such that for f given in 
(Y.Z), 

Here n 3 k , ,  is the component of the normal n 3 k  in the z-direction. 
The eigenvalues of the Jacobian of the system (1.1) are u r ~ ~  and u, which are *- 

aiid 0 in the case of zer6 velocities. If we assume t h t  w is cmstant, a d  that the point values of 
B are knom-n, the one-sided velocities satisfy a;k = a$. Under these assumptions the condition 
(3.3) can be rewritten as 

where Bjk = B (Mjk ) .  

We now assume a discretization of t,he cell-average of the source (3.1) of the form 

N3 

Sj = - C g j k ( w  - Bjk)D;  (3.5) 
k = l  

where D M B,, and g j k  are yet to be determined. To simpli@ the notations we denote m k  = 

h j k n j k , , .  It is easy to check that xcLl mk = 0 and hence in order for the representatioll (3.5) to 
be consistent with (3.4) we must have 

(3.6) 
1 mkBjk(Bjk - 2w) 

21TjI ~~~1 gjk(w - B j k )  . 
D=- -  

Since D in (3.6) should not be a function of w we are seeking constants uk such that 

(3.7) 

where for simplicity we omit the obvious j-dependence from all the notations. Eq. (3.7) can be 
rewitten as 

N A’ A‘ 

- 2 ) : m k ~ k  = ‘ j - g A : ) : a k ~ k .  

(3.8) 
k=l  k=l k = l  

A- A- A’ I 
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Figure 3.1: An admissible triangular mesh 

The coefficients of the powers of Bk in (3.8) produce the following system of equations: 
Y --?mi - = ai xi=, gk, i = I,. . . , AT, 

m . - - a .  E - 191; . i =  l > . . . ! N >  i a.g-  2 3  = -a .  j g i :  i # j ;  i, j = 1,. . . ~ N. 

Finally, from (3.9) we have 

(3.9) 

(3.10) 

Eq. (3.10) can generallj- hold only for N = 2; which mems that one can expect to be able to 
balance the scheme (2.9) for stationary steady-state solutions only in cells that  have two edges 
that contribute to the flux in the rc-direction. This obviously excludes most meshes. There are 
two cases of special interest: 

1. M'hen the mesh is composed of triangles with one side that is parallel t o  the x-axis (see 
Fig. 3.1). each cell has only tu-o edges that contribute to the flux in the z-direction. In this 
case the system (3.9) can be solved. This result will enable us to introduce in Section 3.2 a 
modification of the scheme (2.9) that can be balanced on general meshes. Due to symnetry 
considerations, such a mesh will not satisfy the balance conditions in the y-direction (that 
come from the third equation in (1.1)) unless all triangles are right triangles that are aligned 
with both coordinate axes. 

2. The scheme can be balanced in both directions in the very special case of Cartesian grids. 
This corresponds to the case previously solved in [12]. The results of [E] when viewed 
from the point of view of the system (3.9) amount to the equality 

BI(B1 - 2 2 ~ )  - B2(Bz - 2 ~ )  = ( 2 ~  - B1 - &)(I32 - B1). 

Remark. If m-e assume a more general discretization of the cell average of the cell-average of 
(3.1) of the form 
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then the system (3.9) is replaced by (denoting f i k  = rnk/(21Tj/))  
N 

-2%k = Ck,=l g k l a k t k :  k = 1,.  . . : IC’, 

?i& = - g k a k k ,  k = l ,  . . . ,  N, (3.12) i gka l ,k l  = - gk l  a k ’ k  I k # k’, k ,  k’ = 1,. . . ,AT. 

Eq. (3.12) can be solved in the general case (unlike Eq. (3.9)). For example, in the case of a 
triangular grid ( N  = 3) one possible solution (assuming fil # 0 and 6 3  + 2 f i 2  f 0 )  is 

(3.13) 

(3.14) 

If ji23 + 2 ~ 7 ~ 2  = 0 a permutation of the numbering of the sides of the triangle will provide a 
solution. Other solutions of (3.12) exist. 
While formally being able to balance the scheme with the expressions (3.13) and (3.14), it 
remains unclear in what sense Ck, a k k , B k I  approximates the derivative B,. In other words, it is 
not obvious that the consistency of this discretization can be established. We therefore consider 
this approach unsatisfactory. 

3.2 A new well-balanced scheme 

We focus on conformal triangular grids. Our ideas can be easily extended to other conformal 
unstructured meshes. In order to create a balanced scheme for (l.l), we propose to decompose 
every triangle into several triangles as explained below. This requires a different decomposition 
for the two flux components. For the first component, f, we decompose T‘j into two triangles, 
each of which has an edge parallel to the z-axis. For the second component of the flux we split 
Tj into two other triangles, each of which has an edge parallel to the y-axis. 

We denote the vertices of Tj as yk, k = 1, 2,3,  and define the edges of Tj as Ejl = V , 2  - KI, 
E j 2  = 1.53 - V , 2  and Ej3 = V,, - V,s. The midpoint of the k-th edge of is Mjk. I (a,  b) denotes 
the closed interval with endpoints a and b. We also use &k>x (or V,,,,) to denote the J: (or y) 
component of yk. To simplify- the treatment,-we- &ssify t h e  t!?iangles. into- two- czt~egories as 
portrayed in Fig. 3.2: 

. ... ~ ~~ . 

Type 1: one vertex 15, bisects the opposite edge in the y direction: the y-component 
V,,;, E I (%2,y, 5 ~ : ~ )  and a different vertex V,, bisects the opposite edge in the 2 direction: 
l$2,z E I (Vj l . z ,  43,z). (see Fig. 3.2 (left)). 

a T;r;pe 2: The same Tertex I j l  bisects the opposite edge in Goth t,he J: and Y direction: 
v.- ‘31,Y E l (I.&, l$3:y) zr?d !/ii,L 5 I (?&> j/’j2;+) (gpp Fig. 3.2 (right)). 
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Figure 3.2: The two types of triangles Left: Type 1. Right: Type 2. 

Figure 3.3: The triangle decomposition for the f-flux. 

Note that these definitions specify our vertex numbering convention. The decomposition for 
the g-flm will depend on the type of triangle. 

3.2.1 

For the flux in the x-direct.ion, we decompose into two triangles and T,?" (see Fig. 3 .3 ) .  
Define T:l to be the intersection of edge Ej2 with the line y = The vertices of T;'" 

3 3 .  are := T i l ,  L:.' := &,, and bj i  . The vertices of T,".2 are I$'? .- V-z" Vz'2 := V-- 
. ~~ . 33 % .  3 2  . ~. 

and V.z>2 -:= l&. For both triangles T;"Z, the lengths of the sides are h,:$, the corresponding 
and the normak midpoints are Af3?iz; t.he interior and exterior speeds of propasation are a j k  

are nii' = (nTi,r: n;;>J. These definitions imply Ad$ = Ad. 31 . Mx-'" 32 = M j 3 ;  h.' 31  = h,jl. hi? = hj3: 

h$ + h;: = hj2: nj ,  - mil.z: ni2 - n21 - nj2:z,  = nj3,=; and nT& = nii,, = 0. For the 

ue]ocit?r a~300:.z:: does not ?la:; a.ny- role in the follon-ins computation since n;& = nj3,, = 0. 
Finally, the external reconst.ruciions 2.r~ drlii~ted a-s gj":I' = g j ; .  c;.: = .:"-;' = c j 2 :  2nd G T ~  = 2,;. 

The Decomposition in the z-Direction 

- 1x. 1 

in.0ut.x.i 
3 3  

zi 2.1 2.2  

1.2 - 2.2 2.1 - 2 , 1  - 
in.out.z:l - in.out in.ou:.x:l - in.0": in.out.z.2 - ir..out and a i n . o u r . ~ . 2  - - The 

velocities we have ail - a j l  ; ai2 - ai2 , ail - a32 : 3'" 
x .2  
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On each triangle T,":i we denote the cell-average of the component, of the flux in the 2-direction 
by 0;. It is given by 

The cell-a:er.ge nf t h p  r-rampanent nf khe fliix over the entire cell 
average 

is taken to be the weighted 

x l  z l  2 1  -1 2.2 x,2 2 2 2.2 
Since E:=, hjknjk = 0 we have hj; n33;,x = -hji n&! and hji  n.j3,x = -h..> 31 n,jl,s. Hence, @ j  can 
be rewritten ss 

(3.15) 

a;r,f (UjZ ( 5 2 ) )  + a,g"z"f ( U j  ( P j 2 ) )  

a$ + a;;t 

where Pjl := 

Remark. We would like to note that the flux term (3.15) can be derived directly from (2.7) by 
changing the quadrature points on E32 to  PI and P2. 

and Pj2 := M3xi2. 

We now verify that given by (3.15) approximates -f2 to second order. 

Lemma 3.1 Assume a smooth reconstruction iin(x,  y) in (2.4). Assume that the flux is linear, 
ie., f (x, y) = ax + by + c with constant a and b.  Then = --a. 

Before proving Lemma 3.1 we consider the following geometrical lemma. 

Lemma 3.2 With M and P defined as above (suppressing j), 

/TI 
J43.x - p2;z = --. 

h2n2.x , IT1 hf1.x - P1:X = -= 
proof. Mi = 
which implies that 

(K + K), and for some s, PI = T$ + s (& - b). We require that = hfl y ,  

Therefore 
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\\-hen the orientation of the vertices of 
n2 = 1 (-E 2 y. €2.x)  while m-hen the orientation is counter-clockwise El x E2 = 2 /TI and 
n2 = 2 hz ( E  2 y >  -&.X): so 

is clockwise; € 1  x E 2  = -2 IT1 and 

hz 

IT1 
M , x  - Pl,z = --. 

h 2  n.2 ~ z 

Similar ar5impnts  hold for Ad3,= - P.., 

Proof. (of Lemma 3.1) Since the reconstruction (2.4) was assumed to  be smooth. we have 
I L ~  = u 3 k  out and therefore a; = “;it. In this case 

where we use the notation f ( P )  = f (u , (P) ) .  For the linear flux f(z, y) = az + by t c we have 

The second equality holds since .!M1,y = 
Lemma 3.2 and x k = l  h j k n j k  = 0. 

and Af3,y  = P 2 . y :  while the third-equality is due to 
3 

3.2.2 

Type 1 triangles. We decompose int.0 two triangles T,y” and y.2 (see Fig. 3.4 (left)). The 
int’ersection of the edge Ej3 with the line x = V>2,x is denoted by I$;’. The vertices of Tjy‘l  are 
I$’’: I$’ := yl, and := y2 .  The vertices of ;r3y.2 are vertices T$y2 := v 3 2 :  1/;”2.2 := y3 ,  

h;: + h$ = h .  3 3 .  The normals n$ = n i l :  n:f = ny? = nj3, nil 
- a$out. The and the velocities u y t , Y : l  - - ajz - ajl > ajl - a>0ut: ai2 

velocity a2°utty’i does not appear in the result because n$, = .;cy = 0. Finally, the external 
reconstructions are u;f = uj3, uj2 Y,‘ = u 31, - .3”;” = uj2, and u$ = uj3. 

We denote the cell-averages of the component of the flux in the y-direction on each triangle 
T/>Z by r;. It. is given by 

The Decomposition in the y-Direction 

y 1  - h .  
Y J  = nj2; nY.l 

h Y l 2  = h .  and ”;”;” := v,”l?’. As before, we have A4;; = M;i2 = M72, hji - 31,  11 3 2 :  
= ny.’ 33,y  = 0 ,  33,Y 

in,out,y,2 - in,out,y.l - in.out in,out,y,2 - 

The cell-average of the y-component of the flux over the entire cell T’ is then given by the 
weighted average 
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Figure 3.4: The triangle decomposition for the g-flux. Left: Type 1. Right: Type 2.  

Clearly hJ2 YJ nJ2 Y , l  - - -hJZ Y 1 n31,y, Y , l  and hy12nY - -hY"ny Therefore r3 can be rewritten as 
31 3 L Y  - 32 32,Y' 

Type 2 triangles. This case corresponds to Fig. 3.4 (right). Analogous computations to those 
for Type 1 triangles provide the cell-average of the y-component of the flux over the cell Tj, 
which this time is given by 

(3.17) 

3.2.3 

W e  would now like to combine all the different ingredients that we developed in the previous 
section into one scheme. The scheme that we write here is still a scheme for approximating 
solutions of the conservation lam- (2.2) without the Source t,erm. Based on our preliminary 
analysis of Section 3.1 we knon: t.liat ive will be able to find an admissible discretization of the 
Source t,errns that q-ill reydt ivith 2 .,;;el!-b&n& s&enp. We vdl  treat the SOLTCC~ terms in t.he 

The New Method (for conservation laws) 

nrr7 - t  "m-.+;r\n 
*,G*U 3 b C  U I V L I .  
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We %-rite two versions of the scheme based on the type of triangle. For type 1 triangles, the 
discretization of the component of the flux in the z-direction, Q3 is given by (3.15) while the 
discretization of the component of the flux in the y-direction: r,, is given by (3.16). En this case 
the scheme takes the form 

(3.18) 

Here PI = VZ - ' L E 2 ,  P 2  = V, + i 2 E 2 ,  P3 = V, + z ~ E 3 ,  1 E1,z and P4 = 14 - LsE3. 
2 E 2 , Y  2 E3,z 

For type 2 triangles we replace the discretization of by the one given in (3.17) ending with 

(3.19) 

Remark. A siniple case of interest is that of coordinate-aligned right triangles. Such triangles 
can be considered to be of type 1 n-ith n32 = n33.s = 0 and P 1 - Adp and P33 = A!f33. which 
means that the rnethod becoines (taking iEto account that CkYl hJkn,k = 0) 3 -  

(3.20) 
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As expected, in this case the method (3.20) coincides with the KP method (2.8). 

3.2.4 Adding the Source Term 

MJe return to the shallow water equations (1.11. Our goal is now to find an admissible discretiza- 
tion of the cell-average of the source terms that will preserve stationary steady states. Such a 
term will be added to the RHS of (3.18) or (3.19) depending on the type of the triangle. In 
the following we assume 'Type i triangies. Similar analysis holds for Type 2 tikii&e:s. YV'E dss 
note that the first equation in the system (1.1) is homogeneous. This means that we only have 
to consider the remaining two equations when dealing with the source terms. We recall from 
Section 3.1 that in stationary steady states all the velocities are equal, a$ = = ajk. Our 
new method (3.18) for the last two equations of (1.1) then becomes 

The last term in (3.21) represents the average of the source, i.e., 3; = avg(-(u: - B)B,) and 
3; = avg(-(w - B)By) ,  where both averages are taken over T3. 

We use (3.21) to determine the admissible discretizations of the cell-averages of the source 
terms. For constant w the source terms (given by (3.21)) can be rewritten as 

4 2 n 3 2  y 

21TJ I CwM)2 - Bl\ / i j2  + w p J 4  - B p 3 4 1 [ B M ~ 2  - B p J 4 1 '  
-____ 

Here. we use the notation wM1 := w (Adjl), etc. We take the eqressions in (3.22) as the dis- 
cretization of the source even when w is not constant. Similar expressions can be easiIy written 
for Type 2 triangles. 

Lemma 3.3 The source discretizations 9; given by (3.22) are consistent approximations of the 
source terms in (l.l),! and lead to detailed balance in the stationary steady-state case (3.21). 
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= B, + 0  MI - PI/') at the midpoint between &Il and PI. Hence the first part of 3; BM, --Bp 
Ml, z - Pl ,I 
in (3.22) becomes 

ilpplying a similar argument to the second term of 3; in (3.22) gives 

Clearly, the coefficient of B, in (3.23) is a discretization of a weighted avera.ge of -(UT - B). 
For example, when ui - B is constant we have 

- hlnl.z t- h3n3.z s; z5 (W - B) B, = - (W - B )  B,. 
h2 n2,z 

Similar arguments hold for 3;. 

4 Numerical Examples 
The scheme developed in Section 3.2 did not assume any particular reconstruction. There are 
several different second-order reconstructions on triangular meshes that are being used in the 

simulations. 
The starting point is the limited least-squares estimate of the gradients as done in [2]. The 

first step is to compute a least-squares estimate of the gradient of a field f on the triangle T', 
27, f. We then limit the gradient T),f component by component a s  

-. litm-atiire - - - - - I_ - ( p p  [14] 2nd the r p f p r p ~ ~ p ~  th~r~i_n_\  1 .  14ip brj&T,r describe the n n p  T V ~  ill C)~JT 

It-here d,k f is the least-squares gradient estimate on T,k and ?VfM stands for the usual Slinh'Iod 
limiter 

min, {x,}, 
m a J  {z,} 

if x, > O,Vj, 
if xJ < O,Vj, MUM ( ~ 1 ~ 2 - 2  . . .) := I 0,  ot hem-ise. 

We use the gradients D, to  construct a piecewise linear reconstruction for the point-values of 
each triangle edge EJL as  
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Figure 4.1: The tivo types of triangle meshes. LeJ%: Uniform triangulation. Right: Perturbed 
triangulation. 

We use an adaptive time step given by 

where r3 is the radius of and IALl is the norm of the largest eigenvalues of the Jacobian of 
the flux on Tj.  

We use two types of meshes in most of our simulations. The first is a uniform triangulation 
of a Cartesian mesh with N x N nodes and constant spacings Ax and Ay, which divides each 
Cartesian cell into four triangles. To test our method on more general meshes, our second tS’pe 
of mesh is generated from a uniform triangular mesh with a perturbation of the coordinates of 
the interior vertices. Examples of both meshes are shown in Fig. 4.1. The only exception is 
Exapple 6, which uses a uniform triangulation of a warped Cartesian mesh. 

Example 1: accuracy tests for a 2D linear advection equation 

We test the accuracy of our method (3.18)-(3.19) when applied to the two-dimensional linear 
advection problem 
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N 
10 
20 
40 
80 

1‘7 

Gnifoomn Triangulation Perturbed Triangulation 
relative L1-error L1-order relative L1-error I L1-order 

0.123 - 0.129 - 

0.029 2.09 I 0.034 1.94 
6.52 x loe3 2.15 1 8.68 x 1.95 
1.73 x 1.91 I 3.02 x 10-3 1.52 

I Uniform Triangulation Perturbed Triangulation 
AT 1 relative L’-error L.’-order relative L’-error Ll-order.. 
10 0.064 - 0.064 - 

20 0.014 2.20 0.014 2.20 
40 4.68 x 1.58 4.65 x 10-3 1.59 
80 1.37 x 10-3 1.77 1 1.36 x 2.77 

~ . _ _ _ _ _ _ c _ ~ . ~ .  

Example 2: accuracy tests for a 2D Burgers equation 

We continue by checking the accuracy of our method (3.18)-(3.19) on non-linear problems by 
applying it to  the two-dimensional Burgers equation 

U t  + f (u2), + f (u”), = 0: [-27r, 27rI2, 

u (z? y; t = 0) = sin (9) , 
(4.2) 

with periodic boundary conditions. The L1-error of our method at T = 0.5 is shown in Table 4.2 
for uniform and perturbed triangulations. The computed cell-averages after singularity formation 
at T = 1.5 are shown in Fig. 4.2. Note the sharp shocks that are captured by our method. 

Table 4.2: L1-error and convergence rates for Burgers equation (4.2) at T = 0.5 on a uniform 
and a perturbed triangulation of an N x Iv Cartesian mesh. 

Example 3: accuracy tests for 2D systems 

To test our method (3.18)-(3.19) on a syst,em of equations we apply it to the Sod problem for 
the Euler equations 
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Figure 4.2: Burgers equation at T = 1.5 on a uniform triangulation of a 20 x 20 Cartesian mesh. 
Left: oblique view. Right: side view. 

Here p is the density, (u,v) is the velocity, and E is the energy. The equation of state for the 
pressure is p = (y - 1) [E - (u2 + v ' ) ] .  We set y = 1.4 and take the initial conditions (constant 
in the y-direction) 

(1.0,1.0,0.0,0.0), z < 0.5, 
(0.1,0.125,0.0,0.0), z > 0.5. (P, p, u: 4 = (4.4) 

Figure 4.3 shows the computed cell-averages at T = 0.16 using our method from Section 3.2 
projected onto the y = 0 plane. A reference one-dimensional solution is also shown. The two- 
dimensional problem uses a uniform triangulation based on a 300 x 30 Cartesian mesh on the 
domain [0,1] x [0,0.1]. The one-dimensional reference solution is computed using the second-order 
central method of [13] with 3000 points in the domain [O, 11. 

Example 4: a balance test 

In this example we demonstrate the well-balanced property of our scheme (3.18)-(3.19) 11-ith the 
source discretization (3.22) 

As a simple test of balance, we consider the shallow water problem with initial condi- 
tions that represent a stationary steady-state. We choose w-(z.-yTt = 0) = 2, u (z, y ,  t -0) = 
v (z, y, t = 0) = 0 and a bottom topography given by B (x, y) = sin(2rz) + cos(2ny) on the do- 
main [O. 112. We assume periodic boundary conditions. This initial value problem has the trivial 
stationary steady state solution ZL! (z. y. f) = 2, u (z. y. t )  = 21 (x3 y, t )  = 0 for all t 

The relatiye L'-errors at T = 1 on both uniform and perturbed triangulations based on a 
10 x 10 Cartesian mesh are given in Table 4.3. This table also shon-s the result found using the 
KP method [14] with the same source discretization (3.32) which is not balanced for this scheme 
1A-e see that c!%- methqd h l ! & ? x P S  t g  m.chinP .cc1X-a3- 
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Method Uniform Traangulation Perturbed Tbiangulatzon 
(3.18)-(3.19)-(3.22) 3.5 x 6.9 x 10-19 

[14] $. (3.22). - 3.0 x 10-3 ~ 3.5 x - .  

19 

0 2 D  triangular simulation 
1 D reference simulation - 

I 

0.2} 

0 ’  I 
0 0.2 0.4 0.6 0.8 1 

X 

1 

0.8 

0.6 
3 

0 0.2 0.4 0.6 0.8 
X 

Figure 4.3: The pressure (left) and u-velocity (rzght) fields of the Sod problem at T = 0.16 on a 
U I L ~ I V l ~ ~ ~  c I l ~ a l 1 5 u l a L I l ~ ~ ~ .  lllc C I l L l ~ ~  UW’ d pLujtxiiuri (JIILU iiie y = G plane or’ tile suiur;ion of r;he 
2D problem on a triangular mesh. The line shom-s a 1D reference solution computed with the 
second-order central-upwind method of [13]. 

,,,,c,,- +-I ^ _ _ _  -1.-+:-- Tl- - -:...1-- -1 
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Example 5: propagating waves wi th  a b o t t o m  topography 

We apply our method to a test problem from [16] of a small perturbation of a steady state 
problem on the domain [0,2] x [0,1] with periodic bouridary conditions in y-direction. The 
bottom topography is the elliptical Gaussian mound given by 

B (2, y) = 0.8 exp (-5 (x - 0.9)2 - 50 ( y  - 0.5)’) , 

and the initial conditions are 

(1.01,0.0,0.0), if 0.05 < IC < 0.15, 
(1.0, 0.0,O.O) , otherwise. (w, u, 4 = 

Fig. 4.4 shows the result of our method at various times on a uniform triangulation of both a 
200 x 100 and 400 x 200 Cartesian mesh. These results are in good agreement with other methods 
on Cartesian grids (see j12, 1 G j ) .  

Example  6: converging-diverging channel w i th  b o t t o m  topography 

Our final example is that of a converging-diverging channel with critical flow adapted from [lo]. 
The channel is defined on the domain [O; 31 x [-0.5,0.5] with a half-cosine constriction centered 
at s = 1.5. The mesh for this example is shown in Fig. 4.5 (a). It is a uniform triangularization 
of the warped Cartesian mesh defined by the mapping (2 ,  y) -+ (s, (1 - 0.2 cos’ (T (s - 1.5))) y) 
when /z - 1.51 < 0.5. The initial data is w = 1, u = u = 0. The y-boundaries are reflecting. The 
left s-boundary is an inflow boundary with u = 5.0 and the right 2-boundary is a zeroth-order 
outflow boundary. We run the simulations on a 90 x 30 mesh until T = 7 after the steady state 
is achieved. 

We first present this cxample with a flat bottom, with contours of UI shown in Fig. 4.5 (b). 
Fig. 4.5 (c) shows the same channel at the same time with bottom topography 

2 B ( 2 ,  y) = 0.8 (exp (-10 (s - 1.9)2 - 50 (y - 0.2) ) + exp (-20 (2  - 2.2)2 - 50 (y + 0.2,’)) . 

This topography is shown in Fig. 4.5 (d) and represents two elliptical Gaussian mounds just 
down-flow from the constriction. 
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Figure 4.4: I'i*ave propagation over an elliptical hump at various times. Left: uniform triangu- 
larization based on a 200 x 100 mesh. Right: uniform triangularization based on a 400 x 200 
mesh. 
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Figure 4.5: Exaiiiple 6: (a) The mesh. (b) Contours of UI for a critical flow through a converging- 
diverging channel with flat bottom at T = '7. (c) Contours of w for a critical flow through a 
converging-diverging channel with the topographv shonx below at T = 7. (d) The bottom 
topography for figure ( c ) .  
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